
© 2017 Wickr, Inc. All rights reserved.

Wickr Messaging Protocol
T E C H N I C A L PA P E R

A u t h o r s

C h r i s H o w e l l , To m L e a v y & J o ë l A l w e n

S p e c i a l t h a n k s t o W h i t f i e l d D i f f i e , P a u l K o c h e r , D a n

K a m i n s k y, A d a m S h o s t a c k , S c o t t S t e n d e r & J e s s e B u r n s

f o r r e v i e w i n g t h i s p a p e r a n d / o r c o d e a n d p r o v i d i n g

t h e i r i n s i g h t f u l c o m m e n t s a n d i n v a l u a b l e a d v i c e .

Introduction

Protocol Objects

Protocol Overview

Cryptographic Operations

User and Device Enrollment

	 User Enrollment

	 Device Enrollment

Message Exchange

	 Sending a Message

	 Receiving a Message

	 Protocol Extensions

Wickr Security Practices

	 Ephemeral Messaging

	 Ephemeral Key Management

	 Peer Identity Management

	 Wickr Recovery Bundle

	 Encrypted Local Storage

	 Secure Transport

Conclusion		

Table of Contents

3

3

4

6

7

7

8

9

10

11

12

13

13

14

14

14

14

15

15

Introduction
The Wickr Secure Messaging Protocol provides a platform for secure communications. It is a

method for sending messages with a set of security properties that we will explore in what

follows.

This document is intended as a summary of the protocol and an aid to those who wish to au-

dit the source code. Our goal is to offer enough technical detail to allow security experts and

cryptographers to observe the protocol’s security design, use of cryptographic primitives, etc.,

while also providing value to a wider audience of users and interested parties. Full technical

detail can be obtained by reviewing the source code, which is available for review here.

Protocol Objectives
The primary objective of the Wickr Secure Messaging Protocol is to provide secure commu-

nication between two or more correspondents. There are a variety of properties that can be

demanded in order to call a system “secure”. At minimum it means that the system provides

authenticity and confidentiality: no unauthorized party can inject a message into the system

and no unintended party can get to understand the communications without being given

them by one of the correspondents.

Opposition to this objective may come from a variety of directions. The most common appli-

cation of the concept of opponent, will be to other Wickr users. A user wants to share some

information with some users, other information with other users, and perhaps some with

nobody. Other users may reasonably or unreasonably be interested in acquiring information

whether its owner wanted to share it with them or not. Generally, other Wickr users are the

most common form of opponent but the least powerful. By definition their actions are taken

through Wickr systems and thus subject to some degree of control by Wickr.

The next most numerous class of opponents are probably system penetrators, people who

attack Wickr servers, or perhaps even the users themselves, by communications that do not

pass primarily through Wickr systems. Attacks of this kind have been common for a decade

https://github.com/WickrInc/wickr-crypto-c

and are likely to continue. Wickr counters these attacks with operating system security, fire-

walls, and other measures, but is ultimately aware that such techniques have failed in the

past and may at some point fail again. Therefore Wickr also attempts to avoid knowing any-

thing it does not need, to carry out its operations.

The most threatening opponents are those who can take physical control of Wickr’s systems

and perhaps demand the cooperation and assistance of Wickr personnel. Such opponents

might conceivably be overt criminals who break into a Wickr server room and perhaps take

the staff hostage but they are more likely to be police armed with a court order requiring

staff assistance. It is in this case that Wickr’s architectural security approach comes into its

own. Wickr cannot reveal what it doesn’t know; this is the strength of Wickr’s “ignorance by

design” and the foundational principle from which the protocol was designed.

Protocol Overview
A faithful implementation of the Wickr Secure Messaging Protocol provides the following ser-

vices:

•	 End to End Encryption – Messages and encryption keys are available only with		

	 in Wickr applications and are not disclosed to network attackers or Wickr server 		

	 operators.

•	 Perfect Forward Secrecy – Old message content is not compromised if the 		

	 long-term key of a user or device is compromised. Backward secrecy is 			

	 also provided against passive adversaries.

•	 Protection of Metadata - Node identity information stored in message head		

	 ers is hidden from attackers who lack message context, and source information.

The primary cryptographic actor in the protocol is the node. Concrete representations of

nodes are Wickr applications, or “apps”, which can also be referred to as devices when in-

stalled on devices such as mobile phones. Nodes perform all message encryption and de-

cryption functions. Nodes also create, sign, and publish public asymmetric key components

to facilitate secure messaging operations and validate signatures of keys received from other

nodes.

Users serve as top-level identities in the messaging system (e.g. ‘Alice’). Users are roots of

trust from a cryptographic perspective, and hold the top-level signing keys that tie nodes to

user identities. The protocol’s ability to maintain this trust chain from node to user is what

affords Wickr users great flexibility to securely add devices, or run on several devices at once.

At the highest level of the protocol view, nodes encrypt messages with a strong symmetric ci-

pher using randomly generated keys. Nodes pass the random symmetric keys in the message

to recipient nodes using strong asymmetric cryptography. To decrypt messages, receiving

nodes reverse the process, using asymmetric cryptography to extract the random keys, and

the random keys to decrypt the ciphertext. Group messaging is supported in the same man-

ner by encrypting a message, encrypting the key to that message multiple times (for multiple

nodes), bundling, and sending a single message to multiple nodes.

Pools of public asymmetric key components, or ephemeral keys, are maintained for messag-

ing operations. This ensures that strong forward secrecy is maintained in both synchronous

and asynchronous messaging environments. These keys are signed and validated up through

the root of trust on every use. Private key components never leave the device on which they

are generated, ensuring that none other than sender-designated recipient node(s) can de-

crypt messages.

This design makes the protocol resistant to message authenticity and confidentiality threats

posed by various actors along the entire path of delivery from device to device, including

those posed by a rogue server.

The remainder of this document describes the protocol at length. To review the source code

please see wickr-crypto-c.

https://github.com/WickrInc/wickr-crypto-c

Cryptographic Operations
The Wickr Secure Messaging Protocol relies on the following classes of cryptographic primi-

tives.

•	 DH(K1, PK2)

	 Calculate shared secret using Non-Interactive Key Exchange

	 The current implementation uses Elliptic Curve Diffie Hellman Key 		
	 Exchange with P521 key pairs.

•	 Sk(Data)

	 Calculate cryptographic signature of data using private key k

	 The current implementation uses Elliptic Curve Digital Signature 		
	 Algorithm with P521 key pairs.

•	 Ek(Data)

	 Encrypt data with symmetric cipher using k

	 The current implementation uses AES 256 in GCM mode unless other		
	 wise specified.

•	 Dk(Data)

	 Decrypt data with symmetric cipher using k

	 The current implementation uses AES 256 in GCM mode unless other		
	 wise specified.

•	 KDF(Data)

	 Derive key from data

The current implementation uses HKDF with SHA-256 as the underlying hash function or

Scrypt from low entropy sources unless otherwise specified.

These primitives operate on several keys and identifiers, categorized as follows:

Identity Keys – Long-lived asymmetric key pairs provide for the identity of participants in the

protocol.

Ephemeral Keys – Short-lived asymmetric key pairs used to exchange a shared secret be-

tween participants in the protocol before being discarded.

Symmetric Keys - Symmetric keys used to directly encrypt data or are a significant portion

of the material from which an encryption key is derived. These keys are generated from plat-

form- APIs for gathering random numbers suitable for cryptographic operations.

Identifiers – Unique numbers generated or gathered from users and/or devices, typically in

the form of SHA-256 hash values. These are sometimes used as optional entropy or material

to support obfuscation.

Wickr’s implementation of the protocol is designed to accommodate different cryptographic

primitives should advancements in cryptography require they be changed.

User and Device Enrollment
Wickr’s security begins with enrollment of a user and their first device. This configures the
root keys used to secure node-to-node communications that follow.

User Enrollment
Users enroll using the Wickr application on their own device. The following items critical to the

protocol are created for each Wickr user during enrollment:

Identity Keys

•	 Kr and PKr

	 The Root Identity Key Pair for the user

	 The root of trust for a Wickr user account. Used to sign Node 			
	 Identity Public Keys.

Symmetric Keys

•	 Krs

	 The Remote Storage Root Key

	 Randomly generated key used to encrypt account-level backups	 stored on 	
	 Wickr servers.

•	 Knsr

	 The Node Storage Root Key

	 Randomly generated key material used to derive the key used to encrypt 	

	 data stored on a device.	

•	 Krbk

	 The Recovery Bundle Key

	 Randomly generated key used to protect identity keys stored on 			

	 Wickr servers.

Identifiers

•	 IDr

	 Root identifier

	 Unique value to identify a user on the Wickr system, typically in 		

	 the form of a SHA-256 hash value.

PKr and IDr are stored on Wickr servers and provided to communication peers along with

profile data. Kr, Krs, and Knsr provide critical identity and data protection services and are

shared between devices. Current practices for protecting Krbk from a malicious server are

described in Wickr Recovery Bundle, later in this document.

Device Enrollment
Device enrollment occurs any time a user logs in to Wickr using a new device and after user

enrollment to establish the user’s first device. The terms “device,” “app,” and “node” are used

somewhat interchangeably in this document and all generally describe Wickr application

instances from different perspectives. The terms “app” and “device” generally describe the

application from the perspective of the system or physical device that hosts Wickr software,

whereas “node” generally refers to the application in the context of an encryption scheme.

The following items are created for each Device Enrollment:

Identity Keys

•	 Kn and PKn

	 The Node Identity Key Pair for the device

	 The source and destination identity for messages. Used to sign message 	
	 ciphertext.

Symmetric Keys

•	 Klsd

	 The Local Storage Device Key

	 Computed using KDF(Knsr || Device Data) . Used to protect data 			
	 when stored on a device.

Identifiers
•	 IDn

	 Node Identifier

	 Randomly generated, but not used as a secret key.

Successful device enrollment requires the Kr, Krs, and Knsr keys created during user enroll-

ment as input.

The Wickr app calculates the signature of the Node Identity Public Key using the Root

Identity Private Key, SKr(PKn) and calculates the Local Storage Device Key, Klds

= KDF(Knsr || Device Data). Device Data refers to device-specific data and/or identifiers

derived from installed hardware or operating system sources that are unique, constant across

application installs but not necessarily secret. The Wickr app stores PKn and SKr(PKn) within

the user’s profile on Wickr servers.

Message Exchange
The Wickr Secure Message Protocol can be better understood as providing node-to-node

communication rather than user-to-user communication. A Wickr user can have multiple

associated devices, each of which is considered a node in the protocol.

Consider a user with two devices who sends a message to a user with three devices. In this

case, the initiating node sends an encrypted message to four nodes – the three device nodes

associated with the other user, and the sending user’s own second device node. The notion of

user identity is important – device nodes’ public identity keys are verified as being trusted by

the target user identity – but a node and its associated identity keys are the primary actors in

this protocol.

Ephemeral Key Pairs

Each Wickr device node creates and refreshes a pool of asymmetric key pairs to be used for

Diffie-Hellman key exchange when receiving messages, referred to as KEn and PKEn. The pub-

lic components of these key pairs are signed by the originating device’s Node Identity Private

Key. This signature, SKn(PKEn), is uploaded to Wickr servers along with PKEn and a unique

identifier for the key, IDken.

Sending a Message
When a user wishes to send a message to fellow users, the Wickr app performs the following

steps:

Prepare Key Exchange Data

1.	 Retrieve the receiving users’ profile data, including each user’s Root 		

	 Identity Public Key PKr, a list of that user’s associated device nodes, 	

	 and the Signed Node Identity Public Key (SKr(PKn), PKn), for each node.

2.	 Build a list of recipient nodes from the union of those device nodes 		

	 retrieved in Step 1 and the sending user’s own device nodes.

3.	 Retrieve the signed public components of an Ephemeral Key Pair (SKn(P		

	 KEn),PKEn), and associated Key ID IDken from the server for each 			

	 recipient node.

4.	 Validate the signature chain for each retrieved Ephemeral Key Pair:

a.	 PKEn corresponds to a valid SKn(PKEn)

b.	 PKn corresponds to a valid SKr(PKn)

c.	 PKr corresponds to the expected user identity

Prepare Packet Header

1.	 Generate a random message payload encryption key: Kpayload

2.	 Calculate packet header encryption key from sender profile information: 	

	 Kheader = KDF(IDr_s || IDn_s). Note that packet header encryption is 	

	 only intended to protect the information from attackers who lack 		

	 knowledge of the sender of the message.

3.	 Generate an Ephemeral Key Pair for the sending node: KEs and PKEs

4.	 Calculate a unique exchange key for each recipient node, using the 	 	

 identifier of the receiving node and the sender and receiver’s Root 	 	

	 Identity Public Key: Kexchn=KDF(DH(KEs, PKEn) || PKr_s || PKr_r || IDn)

5.	 Create Key Exchange Data for each recipient node: KEDn = EKexchn(Kpay		

	 load) || IDn || IDken

6.	 Create Key Exchange List: KEL = KED0 || KED1 || … || KEDn-1 for n re		

	 cipient nodes

7.	 Create Encrypted Packet Header: EPH = EKheader(PKEs || KEL)

Prepare Packet Content

1.	 Create message metadata including content type and ephemerality configu		

	 ration

2.	 Create encrypted message payload: EP = EKpayload(Message Metadata || 		

	 Message Content)

3.	 Create packet signature: PS = SKn(EPH || EP)

4.	 Create serialized packet: P = Version || Cryptographic Configuration || 	

	 EP || EPH || PS

The serialized packet is then sent to Wickr servers, which then forward the packet to recipient

nodes.

Receiving a Message
A recipient node is responsible for identifying the appropriate key material to decrypt the

message content. To this end, it receives important information from the Wickr server– the

identifier of the sending node, IDn_s the identifier of that node’s root IDr_s, and user profile

information.

This information is combined with device state to perform the following steps:

1.	 De-serialize packet and set appropriate version and cryptographic con		

	 figuration

2.	 Verify packet signature:

a.	 (EPH || EP) corresponds to a valid SKn(EPH || EP)

b.	 PKn corresponds to a valid SKr(PKn)

c.	 PKr corresponds to the expected user identity

3.	 Calculate packet header encryption key: Kheader = KDF(IDr_s || IDn_s)

4.	 Decrypt packet header: DKheader(EPH) = PKEs || KEL

5.	 Retrieve own KED (Key Exchange Data) from decrypted KEL (Key Exchange 		

	 List) using own node identifier for lookup. KEDn = EKexchn(Kpayload) || 	

	 IDn || IDken

6.	 Use IDken to identify the ephemeral key pair selected by the sending 		

	 node for key exchange and retrieve from local storage: KEn, PKEn

7.	 Calculate exchange key shared with sending node: Kexchn= KDF(DH(KEn, 	 	

	 PKEn) || PKr_s || PKr_r || IDn)

8.	 Calculate DKexchn(EKexchn(Kpayload)) to retrieve Kpayload.

9.	 Decrypt message: DKpayload(EP) = Message Metadata || Message Payload

The message payload is stored in local storage encrypted with the Local Storage Device Key,

Klds. All short-lived keys are deleted shortly after. The Wickr app will carry out actions in ac-

cordance with the message metadata, including deleting the message after its Time to Live

has expired.

Protocol Extensions
The Wickr Secure Messaging Protocol provides a platform for secure communications. In the

simple case, a message payload contains only a text message. However, message metadata

can indicate that other materials are to be exchanged, in which case the message payload

includes one or more shared secrets used to protect those materials. This general design per-

mits the Wickr Secure Messaging Protocol to support end-to-end encryption for file transfer,

audio/video communications, or future use cases.

Wickr Security Practices
The Wickr Secure Messaging Protocol is the foundation for Wickr security, which is provided

through the implementation of many security controls and practices in our products, the full

breadth and description of which are beyond the scope of this document. The following items

are noted as a sampling of security practices supporting the current implementation.

Ephemeral Messaging
Each encrypted message is associated with an expiration time, after which time apps must

delete the message.

Ephemeral Key Management
Ephemeral keys are managed in pools to provide strong forward secrecy, even in cases where

devices go offline for periods of time. The primary key pool is maintained on the Wickr server.

Sending nodes deplete the pool by using keys; recipient nodes replenish it by publishing them.

Online devices replenish the pool immediately. Offline devices replenish the pool as soon as

they come online.

A corner case exists in that if the key pool is exhausted, the last key will need to be re-used

until the pool is replenished, thus expanding the amount of material protected by a particu-

lar ephemeral key. What makes this a corner case is that in our implementation, pool size is

dynamic depending on the needs of the device and sufficiently high to handle devices being

offline for reasonable periods of time.

An attack scenario could be contrived in which an attacker purposefully depletes a device’s

key pool in an attempt to undermine forward secrecy. Even if an attacker could deplete the

pool, exploiting the condition would be highly difficult, requiring the attacker to compromise

the victim’s device and prevent the victim from coming online to replenish the pool. Howev-

er difficult, this attack is mitigated in our implementation through the use of secondary key

pools that are maintained offline within the apps and not subject to depletion by arbitrary

attackers.

Peer Identity Management
The Wickr Secure Message Protocol specifies that a chain of trust exist between a user’s Root

Identity Key Pair, their devices’ Node Identity Key Pairs, and each Nodes’ Ephem-

eral Key Pairs. This chain is validated by message recipients to ensure that messages are

received from the expected user.

The protocol does not specify how a user’s identity is associated with their Root Identity

Key Pair. The Wickr app provides multiple means to associate a Root Identity Public Key with

a human user. Once established, this association is saved, or “pinned,” on each of a user’s

devices. If an attacker poses as a communication peer but has a different Root Identity Pub-

lic Key, this communication will be flagged as not authenticated.

Wickr Recovery Bundle
Three important keys, Kr, Krs, and Knsr are created during User Enrollment and must be

shared securely between devices. This is accomplished by encrypting and storing them on

Wickr servers.

This recovery bundle is encrypted using AES 256 in GCM mode with Krbk prior to storage.

Krbk is then encrypted with a key derived from the user’s passphrase using scrypt and stored

along with the recovery bundle. This method of storing Krbk adds an important level of

usability to the platform to allow the core of the user’s identity to be transferred between

devices using only the user’s passphrase. We recognize that this convenience does not come

without risk, but with scrypt and other platform countermeasures in place we believe we’ve

reduced it as much as possible.

The protocol also supports hardened key scenarios. One is to require the user to maintain

Krbk in their own records and provide it to a device during enrollment. In this case, the en-

crypted recovery bundle would be maintained on Wickr servers but not the passphrase-en-

crypted Krbk. Similarly, Kr, Krs, and Knsr can be maintained offline and used only during

scenarios that require access to those keys.

Encrypted Local Storage
The Wickr app creates an encrypted storage container on each device to store sensitive data

such as identity keys, messages, and account data. This container is decrypted during active

logon sessions and its contents used for normal operation. When the user logs off, the con-

tainer is encrypted with Klds, and this key is removed from local and persistent memory.

Klds is stored in an encrypted format so that it may be recovered upon the next user login.

The key used to encrypt and decrypt Klds is derived from the user’s passphrase using scrypt.

Successful login in this case is tantamount to being able to successfully decrypt Klds and

access encrypted storage material. Those users who wish to always remain logged in to Wickr

simply store the password-derived key in platform-provided secure storage. In this way, sensi-

tive material is always encrypted when the Wickr app is not active.

Secure Transport
The Wickr Secure Messaging Protocol is designed to protect message content even if the data

described above were transmitted in cleartext over an unprotected network. However, traf-

fic analysis would reveal modestly sensitive information, such as identifiers for sending and

receiving nodes and general traffic patterns.

Wickr protects the protocol with two additional layers of security. First, app-server requests

and responses are encrypted with a rotating shared secret key using AES 256 in CFB mode.

Second, the Wickr app tunnels this AES encrypted data inside of TLS. These protections

provide redundant defense-in-depth measures that protect message metadata as well as

content.

Conclusion
The Wickr Secure Messaging Protocol is designed to provide end-to-end encrypted commu-

nications. It accomplishes this through the use of standard cryptographic primitives which

ensure the confidentiality and integrity of messages while in transit and while stored on Wickr

servers. Wickr believes this protocol achieves our goal of keeping our customers in control of

their content, and we welcome your feedback to strengthen it further.

The source code for the Wickr Messaging protocol is available here:

https://github.com/WickrInc/wickr-crypto-c.

¹ The algorithms in use as of December, 2016 are noted.
2 The notation ‘||’ indicates the concatenation of values, e.g. ‘a || b’ means the concatenation of a and b, where
the encodings of a and b include type and length as appropriate.

https://github.com/WickrInc/wickr-crypto-c.

